UNIVERSIDAD AUTONOMA DE NUEVO LEON PREPARATORIA #3

GUÍA PARA EXAMEN DE REGULARIZACIÓN La mecánica y el entorno

Requisito para derecho a examen:

Elaborar a mano 2 veces los conceptos de este laboratorio. Deberá entregarlo para recibir su examen y debe contener sus datos de identificación

Matricula: ₋		
Nombre:		

LA MECÁNICA Y EL ENTORNO

GUÍA PARA EXAMEN DE RECUPERACIÓN

Ing. Rosamaría Rodríguez Salinas

ETAPA 1:CINEMÁTICA: movimiento en una dimensión

Cinemática: rama de la física que estudia el movimiento de los cuerpos. Trata de establecer sus condiciones de rapidez, posición, velocidad, aceleración y otras.

1.1 Magnitudes Escalares y vectoriales

Magnitudes escalares: se precisan por completo mediante un valor numérico y una unidad de medida. No tienen dirección. Ejemplos: Distancia, rapidez, masa, tiempo, temperatura, etc.

Magnitudes vectoriales: (vectores) Se precisan mediante un valor numérico, la unidad de medición correspondiente y además una dirección. Ejemplos: velocidad, desplazamiento, fuerza, impulso, aceleración, etc.

1.2 Características de las magnitudes vectoriales

Coordenadas polares: cuando el vector esta expresado en un punto cardinal (norte, sur, etc.) o en términos de ángulos sexagesimales. Ejemplo 3 km al Este; 1.3 m a 60°

Coordenadas rectangulares: Es cuando el vector se especifica en su componente X y componente Y en un sistema de ejes perpendiculares. Ejemplo Fx=35N y Fy= 60N.

Componentes de un vector: Es transformar las coordenadas polares en coordenadas rectangulares.

Para transformar coordenadas rectangulares a polares se una el "Teorema de Pitágoras" ya que nos permite sumar las coordenadas rectangulares y obtener un vector resultante. (ejemplos en tu libro pagina 10 y 11)

Método de las componentes: nos permite sumar dos o más vectores y obtener un vector resultante. (revisa los pasos del método de las componentes en tu libro páginas 12 a 19 de tu libro y resuelve ejemplos)

1.3 Movimiento en una dimensión

Movimiento rectilíneo: Es el movimiento que tiene un cuerpo cuando su trayectoria es una línea recta.

Movimiento rectilíneo uniforme MRU: es cuando el cuerpo se mueve a velocidad y rapidez constantes.

Movimiento rectilíneo uniformemente acelerado MRUA: es cuando el cuerpo se mueve en línea recta con aceleración constante.

1.4 Ecuaciones del movimiento rectilíneo

Ecuación de la posición
$$x_f = x_i + v_i t + \frac{1}{2} a t^2$$

Ecuación de la velocidad
$$V_f = V_i + at$$

Revisa los ejercicios de tu libro páginas 23 a 29

Las gráficas fundamentales para analizar y describir el movimiento son:

Posición contra tiempo: Sirve para indicar la posición del cuerpo en diferentes momentos, el tiempo que tarda en llegar a una posición, la magnitud de la velocidad del cuerpo.

Velocidad contra tiempo: sirve para indicar la velocidad del cuerpo, el tiempo que tardo en alcanzar esa velocidad, la aceleración del cuerpo y la distancia recorrida en un tiempo dado.

"cuando esta gráfica es una línea recta inclinada es un movimiento con aceleración constante."

Aceleración contra tiempo: Cuando un cuerpo se mueve con velocidad constante su aceleración es nula.

Y cuando la velocidad cambia uniformemente la aceleración es constante.

1.5 Análisis del movimiento en una dimensión desde el punto de vista de las leyes de Newton

Primera ley de Newton: "Todo cuerpo permanecerá en estado de reposo o de movimiento rectilíneo uniforme, a menos que una fuerza externa actúe sobre él"

Es decir, el vector velocidad de un objeto permanecerá constante, si y solo sí la fuerza neta (o resultante) que actúa sobre él es igual a cero.

Segunda ley de Newton: "Cuando un cuerpo se encuentra bajo la acción de una fuerza neta no balanceada, la aceleración producida es directamente proporcional a la fuerza, e inversamente proporcional a la masa del cuerpo"

Es decir, cuando una fuerza diferente de cero actúa sobre un objeto cambia de velocidad y se expresa como:

$$a=\frac{F}{m}$$

Tercera ley de Newton: "A toda fuerza de acción, corresponde otra fuerza igual y contraria llamada reacción"

ETAPA 2: CINEMÁTICA: movimiento en una y dos dimensiones

2.1 Caída de los cuerpos

Aristóteles: Creía que todas las cosas están constituidas por cuatro elementos fundamentales: fuego, agua tierra y aire y que tenían afinidad entre sí. Por lo que creía que el movimiento de un objeto es inversamente proporcional a la densidad del medio. (cuanto más tenue el medio más rápido el movimiento), en el vacío un cuerpo se movería infinitamente rápido llenando el vacío al instante.

Galileo: Llego a la conclusión de que todos los cuerpos caen a la misma velocidad, independientemente de su masa, si no se considera la fricción, describiendo un movimiento uniformemente acelerado en línea recta hacia la superficie de la tierra.

2.2 Aceleración gravitacional

Aceleración de la gravedad: tiene un valor promedio de 9.8m/s² es una magnitud vectorial pues su dirección apunta al centro de la Tierra.

Caída libre: es el movimiento que describe un cuerpo cuando se mueve libremente bajo la influencia de la gravedad.

(Revisa los ejercicios de tu libro páginas 74 a 77 y resuelve ejercicios pagina 85 y 84)

Tiro vertical: es el movimiento que describe un cuerpo cuando se lanza verticalmente hacia arriba o hacia abajo para después moverse bajo la acción de la gravedad.

(Revisa los ejercicios de tu libro páginas 78 a 83 y resuelve ejercicios pagina 85 y 84)

2.3 Movimiento en dos dimensiones.

Principio de independencia de los movimientos: "Cualquier movimiento en la naturaleza puede analizarse como la combinación de dos o mas movimientos rectilíneos independientes entre sí".

Tiro horizontal: es el movimiento de un cuerpo que es lanzado desde cierta altura, en dirección horizontal.

Debe tratarse como la combinación de dos desplazamientos: uno horizontal a velocidad constante y otro vertical uniformemente acelerado similar a caída libre, donde la única variable común de estos dos movimientos es el tiempo.

Revisa los ejercicios de tu libro páginas 90 a 94 y resuelve ejercicios pag.95 a 99

Tiro parabólico: movimiento que consiste en lanzar un objeto en una dirección que forma un ángulo

Con la horizontal a una determinada velocidad. Su máximo alcance se logra a 45°

En este caso la velocidad inicial debe descomponerse en v_x y v_y en donde la velocidad horizontal v_x es constante; la v_y va disminuyendo hasta llegar al punto más alto donde es cero y es cuando comienza a bajar, al llegar al nivel de lanzamiento tendrá la misma v_y inicial y los tiempos de subida y bajada son los mismos.

Revisa los ejercicios de tu libro páginas 102 a 104 y resuelve ejercicios pag.105 a 109.

ETAPA 3: CINEMÁTICA: movimiento circular

3.1 Desplazamiento lineal y angular.

Desplazamiento angular: es el ángulo descrito por un cuerpo que se encuentra en movimiento circular; su unidad usual es el grado sexagesimal, un círculo completo tiene 360°.

La longitud del arco (s): es la distancia recorrida a lo largo de una trayectoria circular.

Radián: ángulo formado en el centro de un círculo por un arco de circunferencia cuya longitud mide lo mismo el radio del círculo.

$$1 \ radián = \frac{360^{\circ}}{2\pi}$$
 y $\frac{grados}{180} = \frac{radianes}{\pi}$

Velocidad angular: es la magnitud de desplazamiento angular dividida entre el tiempo que se tardó en recorrer dicho ángulo; su unidad $\frac{radianes}{segundo}$ o s⁻¹ y su fórmula es $w = \frac{\theta}{t}$

Revisa los ejercicios de tu libro páginas 131 a 132

Velocidad tangencial: es la velocidad lineal que siguen la trayectoria de una circunferencia manteniendo una trayectoria perpendicular al radio. Formula v = rw

Revisa los ejercicios de tu libro páginas 133 a 135

3.4 Frecuencia y periodo.

Frecuencia (f): Es el número de ciclos por unidad de tiempo que efectúa un cuerpo en movimiento vibratorio, ondulatorio o movimiento circular y se expresa en revoluciones o vueltas alrededor del eje.

$$f = \frac{Num \ de \ revoluciones}{tiempo}$$

Revisa los ejercicios de tu libro páginas 136 a 138.

Periodo (T): Es el tiempo que tarda un objeto en movimiento circular en efectuar una revolución $f = \frac{1}{\pi}$ y $w = 2\pi f$ completa.

Revisa los ejercicios de tu libro páginas 140 a 141.

3.4 Fuerza y aceleración centrípeta.

Aceleración centrípeta: se dirige radialmente al centro de rotación y es la que provoca el movimiento en una trayectoria circular y no en forma recta.

$$a_c = \frac{v^2}{r}$$
 \mathbf{y} $a_c = rw^2$

. $a_c = \frac{v^2}{r}$ y $a_C = rw^2$ Revisa los ejercicios de tu libro páginas 144 a 145.

Fuerza centrípeta: es una fuerza dirigida al centro de rotación y siempre es perpendicular a la dirección del movimiento.

$$F_c = m \frac{v^2}{r}$$
 y $F_c = mrw^2$

Revisa los ejercicios de tu libro páginas 146 a 149.

4.1 Aplicación de las leves de Newton.

Diagrama de cuerpo libre: consiste en la representación gráfica, en un sistema de coordenadas, de todas las fuerzas que actúan sobre el objeto, se usa para analizar las fuerzas y determinar si el cuerpo está en equilibrio.

Revisa los ejercicios de tu libro páginas 162 a 171 y resuelve ejercicios pag.172 a 175.

4.1.2 Fricción.

Fuerza de Fricción (f): se opone al movimiento de deslizamiento entre las superficies en contacto y sigue una dirección paralela a ellas; Se debe a la irregularidad de las superficies en contacto, lo cual origina el desgaste de las superficies. Formula $f = \mu N$

Fuerza Normal (N): Es la que ejerce la superficie sobre el cuerpo que se desliza o está en reposo sobre ella y es perpendicular a la superficie.

Coeficiente de fricción (µ): Carece de unidades y es característico de los materiales en contacto, pues depende de la rugosidad, lubricación, pulido de la superficie y condiciones climatológicas.

Tipos de fricción:

Fricción estática: Se opone al movimiento inicial de los cuerpos.

Fricción dinámica: Se opone a que un cuerpo en movimiento siga moviéndose.

La fricción estática siempre es mayor que la fricción dinámica.

Revisa los ejercicios de tu libro páginas 180 a 187.

4.2 Estática.

Estática: se encarga de analizar el equilibrio de los cuerpos; considera que la fuerza resultante que actúa sobre un cuerpo es nula. $F_r = \sqrt{(\Sigma F_X)^2 + (\Sigma F_Y)^2} = 0$

Cuando la fuerza resultante es igual a cero, se presenta uno de los siguientes casos:

El objeto se encuentra en reposo (**equilibrio estático**)

Describe un movimiento rectilíneo uniforme (equilibrio dinámico)

Primera condición del equilibrio: Un cuerpo se encuentra en equilibrio traslacional si la resultante de todas las fuerzas que actúan sobre él es igual a cero.

Fuerza Equilibrante: Es una fuerza de igual magnitud, en la misma dirección y en sentido contrario a la resultante.

Fuerzas concurrentes: cuando dos o más fuerzas están actuando sobre un mismo punto.

Fuerzas coplanares: las fuerzas están en un mismo plano.

Revisa los ejercicios de tu libro páginas 192 a 198.

RECUERDA PRACTICAR EJERCICIOS DE APLICACIÓN DE CADA ETAPA